
PC60: Workshop on Numerical Analysis and Scientific Computing for Electromagnetics PC60, IHP, 17-06–2025

Traces for Hilbert Complexes
(joint work with Ralf Hiptmair@ETHZ and Erick Schulzf@ETHZ)

Dirk Pauly

Institut für Analysis, TUDD

Workshop on Numerical Analysis and Scientific Computing for Electromagnetics

in Honor of Patrick Ciarlet’s 60th birthday

PC60: IHP, Paris

June 17, 2025

Dirk Pauly Traces for Hilbert Complexes Institut für Analysis, TUDD



PC60: Workshop on Numerical Analysis and Scientific Computing for Electromagnetics PC60, IHP, 17-06–2025

Introduction

Traces for: Maxwell’s Equations / De Rham Complex

△! are complicated △!
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434 A Index of Function Spaces

If Γ is smooth, H 1/2
∥ (Γ ) = H

1/2
⊥ (Γ ) = H

1/2
t (Γ ), where H 1/2

t (Γ ) := L2
t (Γ ) ∩

H 1/2(Γ ).

H
−1/2
⊥ (Γ ), H

−1/2
∥ (Γ ) = their duals, with L2

t (Γ ) as the pivot space ;

H
−1/2
∥ (divΓ ,Γ ) = {f ∈ H

−1/2
∥ (Γ ) : divΓ f ∈ H−1/2(Γ )}

= γ⊤(H (curl,Ω)) ;
H

−1/2
⊥ (curlΓ ,Γ ) = {f ∈ H

−1/2
⊥ (Γ ) : curlΓ f ∈ H−1/2(Γ )}

= π⊤(H (curl,Ω)).

The latter two spaces are dual with respect to the pivot space L2
t (Γ ). This duality is

generally denoted γ ⟨·, ·⟩π or π ⟨·, ·⟩γ .
Traces on Part of the Boundary

Let Γ ′ denote a part of the boundary, and Γ ′′ = int (Γ \Γ ′). Tangential trace and
tangential components mappings on Γ ′ are denoted by γ⊤′ , π⊤′ when they originate
fromH (curl,Ω), respectively γ 0⊤′ , π0

⊤′ when they originate fromH 0,Γ ′′(curl,Ω).
For a vector field v on Γ ′, we call ṽ the field defined on Γ by ṽ = v on Γ ′ and
ṽ = 0 on Γ ′′.

H̃
1/2
∥ (Γ ′) = {v ∈ H

1/2
∥ (Γ ′) : ṽ ∈ H

1/2
∥ (Γ )}

= π⊤′(H 1
0,Γ ′′(Ω)) ;

H̃
1/2
⊥ (Γ ′) = {v ∈ H

1/2
⊥ (Γ ′) : ṽ ∈ H

1/2
⊥ (Γ )}

= γ⊤′(H 1
0,Γ ′′(Ω)) ;

H̃
−1/2
∥ (Γ ′), H̃−1/2

⊥ (Γ ′) = their duals ;

H̃
−1/2
∥ (divΓ ,Γ ′) = {f ∈ H̃

−1/2
∥ (Γ ′) : divΓ f ∈ H̃−1/2(Γ ′)}

= γ⊤′(H (curl,Ω)) ;
H̃

−1/2
⊥ (curlΓ ,Γ ′) = {f ∈ H̃

−1/2
⊥ (Γ ′) : curlΓ f ∈ H̃−1/2(Γ ′)}

= π⊤′(H (curl,Ω)) ;
H

−1/2
∥,0 (divΓ ,Γ ′) = γ 0⊤′(H 0,Γ ′′(curl,Ω))

= {f ∈ H
−1/2
∥ (divΓ ,Γ ′) : f̃ ∈ H

−1/2
∥ (divΓ ,Γ )}

= {f ∈ H
−1/2
∥ (divΓ ,Γ ′) : tν′(f ) = 0} ;

lots of pages
on traces

Foreword

Our interest in the study and computation of electromagnetic fields started during
the 1990s. For Franck Assous, it originated from the need to compute precisely the
motion of charged particles for plasma physics applications. For Patrick Ciarlet, it
began with the study of the relations between the electromagnetic fields and their
potentials from a mathematical point of view. From both the numerical and the
theoretical points of view, it soon appeared that one had to be especially careful
when dealing with singular configurations. A typical example occurs when one has
to solve a seemingly elementary problem, namely the computation of the fields
in vacuum, around a perfectly conducting body, or inside a perfectly conducting
cavity or waveguide. Together with Simon Labrunie, we started to investigate this
problem for a class of such bodies that are invariant by rotation. Since then, we have
collaborated regularly on this topic and many others.

Going back to the example, when the interface between the body and vacuum
is piecewise smooth and when the computational domain is locally non-convex
near this interface, intense electromagnetic fields may occur. Pointwise values are
unbounded, and mathematically, the smoothness of the fields deteriorates. It turns
out that this common situation induces challenging problems, which we address
here. Though the contents of this monograph chiefly deal with theoretical issues,
most results are derived in order to solve problems numerically, using discretized
variational formulations (we do not address the issue of discretization in this book).

The focus of this monograph is clearly an applied mathematical one; however,
we begin by discussing the physical framework of electromagnetism and related
models. One of the main points of the book is the introduction of mathematical tools
to characterize electromagnetic fields precisely and, among others, the traces of
those fields on submanifolds of R3. This issue is especially important on nonsmooth
submanifolds. Another important issue is the mathematical measure of those fields,
which can take several forms. Interestingly, this leads to very different categories
of discretized problems. A third main issue is the introduction and justification of
approximate models in a broad sense, such as, for instance static, quasi-static or
time-harmonic, and also of reduced models, namely 2D and 2 1

2D models. The last

v
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Introduction

Traces for Hilbert Complexes

Question: Why are traces so complicated?

Question: What is H̃
±1/2
∥/�/0(0)(divΓ / curlΓ,Γ)?

. . . some answers below . . .
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Introduction

Traces for Hilbert Complexes

OVERVIEW and BASIC IDEAS

paper in JFA 2023:

R. Hiptmair, D. Pauly, and E. Schulz: Traces for Hilbert Complexes
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Introduction

Traces

? Traces ?

Traces without any regularity of the domain?

Is this even possible?

even better:

? Traces ?

Traces without domains (or boundaries)?
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Introduction

Traces

A ∶ D(A) ⊂ H0 → H1 lddc: lin, dendef, cl

Traces for D(A)?

Ω ⊂ RN Lipschitz:

very classical

D(A) = H1 or W1,p , scalar trace us = u∣Γ

classical (we stay in Hilbert spaces)

D(A) = H(curl) or H(div), tan or nor traces vt = (ν × v × ν)∣Γ, vn = (ν ⋅ v)∣Γ

more recent (BGG, zoo of complexes)

D(A) = H(Curl⊺ CurlS), H(divDivS),H(symCurlT), . . .
. . .H(CurlCurl Curl), H(curlDiv), H(Grad curl) . . .

traces?
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Introduction

Traces

A ∶ D(A) ⊂ H0 → H1 lddc

Traces for D(A)?

Ω ⊂ RN Lipschitz

What if less regularity? What if

Ω just open / no regularity and D(A) = H1(Ω), H(curl,Ω), H(div,Ω), . . . ?

no Ω at all, just D(A)?
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Introduction

Traces

A ∶ D(A) ⊂ H0 → H1 lddc

A∗ ∶ D(A∗) ⊂ H1 → H0 lddc, Hilbert space adjoint

Traces for D(A)?

basic idea: integration by parts / extension of adjoints

∀ x ∈ D(A) ∀ y ∈ D(A∗) ⟨y ,A x⟩H1
− ⟨A∗ y , x⟩H0

= 0

think of A = ˚grad ∶ D(A) = H̊1 ⊂ L2 → L2

and A∗ = −div ∶ D(A∗) = H(div) ⊂ L2 → L2

⟨y , ˚grad x⟩L2 + ⟨div y , x⟩L2 = 0

Dirk Pauly Traces for Hilbert Complexes Institut für Analysis, TUDD
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Introduction

Traces

Å ⊂ A lddc

A∗ ⊂ A⊺ ∶= Å ∗ (A⊺ formal transpose of A) lddc, Hilbert space adjoints

Traces for D(A)?
basic idea and setting: integration by parts / extension of adjoints

∃ x ∈ D(A) ∃ y ∈ D(A⊺) ⟨y ,A x⟩H1
− ⟨A⊺ y , x⟩H0

≠ 0

think of ˚grad = Å ⊂ A = grad D( ˚grad) = H̊1 ⊂ D(grad) = H1

and −d̊iv = grad∗ = A∗ ⊂ A⊺ = Å ∗ = ˚grad ∗ = −div D(d̊iv) = H̊(div) ⊂ D(div) = H(div)

⟨y ,grad x⟩L2(Ω) + ⟨div y , x⟩L2(Ω) = ⟨yn, xs⟩“ L2(Γ)′′
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= “∫
Γ
ynxs

′′ = ⟨⟨yn, xs⟩⟩H−1/2(Γ),H1/2(Γ)

≠ 0

for some x ∈ H1, y ∈ H(div)
For simplicity of this talk: real Hilbert spaces

Dirk Pauly Traces for Hilbert Complexes Institut für Analysis, TUDD
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Introduction

Traces

Å ⊂ A lddc

A∗ ⊂ A⊺ = Å ∗ lddc, Hilbert space adjoints

(Å,A∗) pair “with” boundary conditions (A,A∗), (Å,A⊺ = Å ∗)
(A,A⊺) pair “without” boundary conditions dual/adjoint pairs

Traces for D(A)?
basic idea and setting: integration by parts / extension of adjoints

bd trace τA ∶ D(A)→ D(A⊺)′, τAx(y) ∶= ⟨y ,A x⟩H1
− ⟨A⊺ y , x⟩H0

x ↦ τAx
x ∈ D(A), y ∈ D(A⊺)

bd dual trace τA⊺ ∶ D(A
⊺)→ D(A)′, τA⊺y(x) ∶= ⟨x ,A

⊺ y⟩H0
− ⟨A x , y⟩H1

y ↦ τA⊺y

note τA⊺y(x) = −τAx(y)

equivalently bilinear form on D(A) ×D(A⊺) resp. D(A⊺) ×D(A)

⟨⟨x , y⟩⟩ ∶= τAx(y) = −τA⊺y(x) = ⟨y ,A x⟩H1
− ⟨A⊺ y , x⟩H0
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Introduction

Hilbert Complexes

Traces for Hilbert Complexes

We give Traces for Hilbert Complexes.

On the other hand Hilbert Complexes are necessary for Traces.
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Traces

Traces for Single Operators

Traces for Single Operators
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Traces

Traces for Single Operators (and Adjoints)

Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ lddc (Hilbert space adjoints)

Traces for D(A) and D(A⊺) — traces come always in pairs

τAx(y) = ⟨y ,A x⟩H1
− ⟨A⊺ y , x⟩H0

primal / dual traces τA ∶ D(A)→ D(A⊺)′, τA⊺ ∶ D(A
⊺)→ D(A)′

primal / dual adjoint traces τ ′A ∶ D(A
⊺)′′ → D(A)′, τ ′A⊺ ∶ D(A)

′′ → D(A⊺)′

note: Hilbert spaces H
here= D(A) ∨D(A⊺) are self-dual (Riesz) and reflexive

⇒ isometric isomorphisms ρH ∶ H→ H′ and ιd ∶ H→ H′′

Theorem (kernels, boundedness, and adjoints)

N(τA) = D(Å) and N(τA⊺) = D(A∗) and ∥τA∥, ∥τA⊺∥ ≤ 1
τ ′Aιd = −τA⊺ and τ ′

A⊺
ιd = −τA

Remark

R(τA⊺) = R(τ ′A) = N(τA)
○ = D(Å)○ and R(τA) = D(A∗)○
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Traces

Traces for Single Operators (Riesz Isometric Isometries)

Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ lddc (Hilbert space adjoints)

Let x ∈ D(A). What is / solves

qy ∶= −ρ−1D(A⊺)τAx ∈ D(A
⊺) and qx ∶= A⊺ qy ?

Lemma (extension / right inverse)

(qx , qy) ∈ N(A⊺ A+1) ×N(AA⊺ +1) and qx − x ∈ D(Å) = N(τA)

⇒ τA A⊺ qy = τAqx = τAx

⇒ −τA A⊺ ρ−1D(A⊺) = idR(τA) ⇒ −A⊺ ρ−1D(A⊺) right inverse of τA on R(τA)

note: ( [0 −A⊺
A 0

] + 1) [qx
qy
] = 0 (formally skew-symmetric)
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Traces

Traces for Single Operators (Riesz Isometric Isometries)

Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ lddc (Hilbert space adjoints)

Lemma (extensions / right inverses)

−τA A⊺ ρ−1
D(A⊺) = idR(τA) and qτA ∶= −A⊺ ρ−1D(A⊺) right inverse of τA on R(τA)

−τA⊺ Aρ−1D(A) = idR(τA⊺ ) and qτA⊺ ∶= −Aρ−1D(A) right inverse of τA⊺ on R(τA⊺)

Definition (extensions / right inverses)

Let ϕ ∈ R(τA) and ψ ∈ R(τA⊺). We call:

qϕ = −ρ−1
D(A⊺)ϕ ∈ N(AA⊺ +1) harm Neumann ext of ϕ since τA A⊺ qϕ = ϕ

q

qϕ = A⊺ qϕ = −A⊺ ρ−1
D(A⊺)ϕ ∈ N(A

⊺ A+1) harm Dirichlet ext of ϕ since τA
q

qϕ = ϕ

qψ = −ρ−1
D(A)ψ ∈ N(A

⊺ A+1) harm Neumann ext of ψ since τA⊺ A
qψ = ψ

q

qψ = A qψ = −Aρ−1
D(A)ψ ∈ N(AA⊺ +1) harm Dirichlet ext of ψ since τA⊺

q

qψ = ψ
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Traces

Traces for Single Operators Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ (lddc)

Theorem (kernels, ranges = annihilators)

N(τA) = D(Å)
N(τA⊺) = D(A∗)

R(τA) = D(A∗)○ = {Φ ∈ D(A⊺)′ ∶ D(A∗) ⊂ N(Φ)}

R(τA⊺) = D(Å)○ = {Φ ∈ D(A)′ ∶ D(Å) ⊂ N(Φ)}
In particular, the kernels and ranges are closed.

Definition and Lemma (trace spaces)

T(A) ∶= D(Å)�D(A) = N(A⊺ A+1) ≅ D(τA)/N(τA) = D(A)/D(Å) =∶ T (A)

T(A⊺) ∶= D(A∗)�D(A⊺) = N(AA⊺ +1) ≅ D(τA⊺)/N(τA⊺) = D(A⊺)/D(A∗) =∶ T (A⊺)

⇒ red traces pτA ∶= τA∣T(A) ∶ T(A)→ R(τA) pτA⊺ ∶= τA⊺ ∣T(A⊺) ∶ T(A⊺)→ R(τA⊺)

Theorem (ranges and trace isometries)

R(pτA) = R(τA) = D(A∗)○ = ρD(A⊺)T(A
⊺) = T(A⊺)′

R(pτA⊺) = R(τA⊺) = D(Å)
○ = ρD(A)T(A) = T(A)′

The reduced traces are isometric isomorphisms.
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Traces

Traces for Single Operators Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ (lddc)

Remark (trace /Riesz isometric isomorphisms →→)

τA ∶ D(A)→ R(τA) ⊂ D(A⊺)′, ρA ∶= ρD(A) ∶ D(A)→→ D(A)′

τA⊺ ∶ D(A
⊺)→ R(τA⊺) ⊂ D(A)′, ρA⊺ ∶= ρD(A⊺) ∶ D(A

⊺)→→ D(A⊺)′

pτA = τA∣T(A) ∶ T(A)→→ R(τA) = T(A⊺)′, pρA ∶= ρA∣T(A) ∶ T(A)→→ T(A)′

pτA⊺ = τA⊺ ∣T(A⊺) ∶ T(A
⊺)→→ R(τA⊺) = T(A)′ pρA⊺ ∶= ρA⊺ ∣T(A⊺) ∶ T(A

⊺)→→ T(A⊺)′

Lemma (trace /Riesz isometric isomorphisms →→)

R(τA) = R(pτA) = R(pρA⊺) = T(A⊺)′, pτA ∶ T(A)→→ T(A⊺)′, pρA⊺ ∶ T(A
⊺)→→ T(A⊺)′

R(τA⊺) = R(pτA⊺) = R(pρA) = T(A)′, pτA⊺ ∶ T(A
⊺)→→ T(A)′, pρA ∶ T(A)→→ T(A)′

Definition (inverses of trace /Riesz isometric isomorphisms →→)

qτA ∶= pτ
−1
A ∶ T(A⊺)′ →→ T(A), qρA⊺ ∶= pρ

−1
A⊺ ∶ T(A

⊺)′ →→ T(A⊺)

qτA⊺ ∶= pτ
−1
A⊺ ∶ T(A)

′ →→ T(A⊺), qρA ∶= pρ
−1
A ∶ T(A)

′ →→ T(A)

Remark

Continuity of traces and extensions for free! (no ass on R(A) or domains Ω)

△! even isometries △!
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Traces

Traces for Single Operators Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ (lddc)

Remark (trace /Riesz isometric isomorphisms →→)

Continuity/isometry of traces and extensions for free! (no ass on R(A) or domains Ω)

△! NO compact embeddings or Friedrichs/Poincaré type estimates NEEDED △!

We do NOT need:

e.g.: Ω ⊂ R3 bd, weak Lip (compact embeddings)
(Weck 1972/’74, Weber 1980, Picard 1984)

H1(Ω)↪↪ L2(Ω) or H̊(curl,Ω) ∩H(div,Ω)↪↪ L2(Ω)

or even weaker (Friedrichs/Poincaré type estimate ⇔ closed range)

Ω (weak Lip, bd in ONE direction) ⇒ R( ˚grad) and R(div) closed

Ω (weak Lip, bd in TWO directions) ⇒ R( ˚curl) and R(curl) closed

Ω (weak Lip, bd in THREE directions) ⇒ R(d̊iv) and R(grad) closed

Dirk Pauly Traces for Hilbert Complexes Institut für Analysis, TUDD
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Traces

Traces for Single Operators Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ (lddc)

Theorem (trace /Riesz isometric isomorphisms →→)

T(A)′ ≅
pρA
T(A) ≅

pτA
T(A⊺)′, T(A⊺)′ ≅

pρA⊺
T(A⊺) ≅

pτA⊺
T(A)′

bilinear (sesquilinear) forms on T(A) ×T(A⊺) or D(A) ×D(A⊺)

⟨⟨x , y⟩⟩ ∶= ⟨⟨x , y⟩⟩τ ∶= τAx(y) = −τA⊺y(x) = ⟨A x , y⟩H1
− ⟨x ,A⊺ y⟩H0

,

⟨⟨x , y⟩⟩ρ ∶= ρAx(y) = ⟨x , y⟩D(A) = ⟨x , y⟩H0
+ ⟨A x ,A y⟩H1

Corollary (“integration by parts”)

⟨A x , y⟩H1
= ⟨x ,A⊺ y⟩H0

+ ⟨⟨x , y⟩⟩

Dirk Pauly Traces for Hilbert Complexes Institut für Analysis, TUDD
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Traces

Traces for Single Operators Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ (lddc)

Isometric Isomorphisms (→→)

D(A)

T (A) T(A) R(τA) = T(A⊺)′

T(A)′ = R(τA⊺) T(A⊺) T (A⊺)

D(A⊺)

π�

ιq pτA

pρA pρA⊺

pτA⊺
ιq

π�

D(A) = D(Å)⊕D(A) T(A)

[x�] = [x] and τAx� = τAx = τA[x]
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Traces

Traces for Single Operators Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ (lddc)

Isometric Isomorphisms (→→)

D(A) R(A)

T (A) T(A) R(τA) = T(A⊺)′

T(A)′ = R(τA⊺) T(A⊺) T (A⊺)

R(A⊺) D(A⊺)

π�

A

τA

ιq pτA

pρA
pA

pρA⊺

pτA⊺
ιq

π�

A⊺

τA⊺

pA ∶= A ∣T(A)
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Traces

Traces for Single Operators Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ (lddc)

Isometric Isomorphisms (→→)

D(A) R(A)

T (A) T(A) R(τA) = T(A⊺)′ D(A⊺)′

D(A)′ T(A)′ = R(τA⊺) T(A⊺) T (A⊺)

R(A⊺) D(A⊺)

π�=ι∗�

τA

τAρA

A

π̃�

ιq pτA

pρA
±pA

ι�

qτA

π′�

qρA⊺

ι′�

ι′�

π′� qτA⊺

qρA pρA⊺

pτA⊺

ιq

±xA⊺

ι�

π̃�
π�=ι∗�

τA⊺
τA⊺

ρA⊺

A⊺

“on T(A) = N(A⊺ A+1) and T(A⊺) = N(AA⊺ +1)”:
qτA = −pA

⊺
qρA⊺ pτA = pρA⊺

pA pA
−1
= −pA

⊺
pA = A ∣T(A)

qτA⊺ = −pAqρA pτA⊺ = pρApA
⊺

(pA
⊺
)−1 = −pA pA

⊺
= A⊺ ∣T(A⊺)
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Traces

Traces for Single Operators Å ⊂ A and A∗ ⊂ A⊺ = Å ∗ (lddc)

Theorem (kernels and ranges of traces / isometric isomorphisms)

N(τA) = D(Å)

R(τA) = R(pτA) = D(A∗)○ = R(pρA⊺) = T(A⊺)′

T(A) = D(Å)�D(A) = N(A⊺ A+1)

T(A) ≅ T (A) = D(A)/D(Å)

N(τA⊺) = D(A∗)

R(τA⊺) = R(pτA⊺) = D(Å)○ = R(pρA) = T(A)′

T(A⊺) = D(A∗)�D(A⊺) = N(AA⊺ +1)

T(A⊺) ≅ T (A⊺) = D(A⊺)/D(A∗)

Remark (summary)

trace ranges are annihilators of trace kernels

trace ranges are duals of reduced transpose trace spaces

trace spaces are kernels N(A⊺ A+1) and N(AA⊺ +1) (“harmonic fields”)

trace spaces are orthogonal complements of trace kernels (—)

trace spaces are minimal norm extensions (—)

trace spaces are quotient spaces of trace kernels
note:

elements of the trace spaces are “smooth”

regularity is never a problem (regularity not a good term)

integrability is always the problem
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes

so far NO (Hilbert) complexes
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes

Traces for Hilbert Complexes
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes

Different Hilbert Complexes

⋯ H0 H1 H2 ⋯
⋯ Å0

⋯

Å1

A⊺0 =Å
∗
0

⋯

A⊺1 =Å
∗
1

⋯ (unbd prim/dual HilComs)

⋯ H0 H1 H2 ⋯
⋯ A0

⋯

A1

A∗0

⋯

A∗1
⋯ (unbd prim/dual HilComs)

⋯ D(A0) D(A1) D(A2) ⋯⋯ A0 A1 ⋯ (bd DomCom)

⋯ D(A0)′ D(A1)′ D(A2)′ ⋯⋯
A′0 A′1

⋯ (bd adjoint DomCom)

⋯ D(A⊺−1) D(A⊺0 ) D(A⊺1 ) ⋯⋯ A⊺0 A⊺1 ⋯ (bd DomCom)

⋯ D(A⊺−1)
′ D(A⊺0 )

′ D(A⊺1 )
′ ⋯⋯

A⊺0
′ A⊺1

′ ⋯ (bd adjoint DomCom)

setting

Åℓ ⊂ Aℓ and A∗ℓ ⊂ A⊺ℓ = Å
∗
ℓ (lddc)

R(Å0) ⊂ N(Å1), R(A0) ⊂ N(A1) (prim HilComs)

R(A∗1 ) ⊂ N(A∗0 ), R(A⊺1 ) ⊂ N(A⊺0 ) (dual HilComs)

R(A′1) ⊂ N(A′0), R(A⊺0
′) ⊂ N(A⊺1

′) (adjoint HilComs)

note A⊺n
′ ∶ D(A⊺n−1 )

′ → D(A⊺n )
′

⇒ A⊺n
′

p/≅ An ∶ D(An)→ D(An+1) but A⊺n
′

p≅ An−1 ∶ D(An−1)→ D(An) (index shift)
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes Åℓ ⊂ Aℓ and R(. . . ) ⊂ N(. . . )
A0 ∶ D(A0)→ D(A1)

τA0
∶ D(A0)→ D(A⊺0 )

′

A⊺1
′ ∶ D(A⊺0 )

′ → D(A⊺1 )
′

A⊺1 ∶ D(A
⊺
1 )→ D(A⊺0 )

τA⊺
1
∶ D(A⊺1 )→ D(A1)′

A′0 ∶ D(A1)′ → D(A0)′

(vol diff ops)

(trace ops)

(surf diff ops)

Theorem (surface differential operators / commutators with traces)

τA1
A0 = −A⊺1

′τA0
and τA⊺

0
A⊺1 = −A

′
0 τA⊺

1

Theorem (integration by parts . . . )

. . . on domains: x ∈ D(A), y ∈ D(A⊺) or x ∈ T(A), y ∈ T(A⊺) ⇒ ⟨A x, y⟩H1
= ⟨x,A⊺ y⟩H0

+ ⟨⟨x, y⟩⟩

. . . on trace domains τA1
A0 = −A⊺

1
′τA0

x ∈ D(A0), z ∈ D(A
⊺
1
) ⇒

⟨⟨A0 x, z⟩⟩1 =τA1
(A0 x)(z) = −τA0

(x)(A⊺
1
z) = −⟨⟨x,A⊺

1
z⟩⟩0

. . . on trace spaces pτA1
π�xA0 = −

z

A⊺
1
′π′� pτA0

x ∈ T(A0), z ∈ T(A
⊺
1
) ⇒

⟨⟨π�xA0x, z⟩⟩1 = pτA1
(π�xA0x)(z) = −pτA0

(x)(π�
y

A⊺
1
z) = −⟨⟨x,π�

y

A⊺
1
z⟩⟩0

. . . on trace ranges
z

A⊺
1
′ = −pτA1

ι−1
d
(

xA′
0
)′ιd qτA0

φ ∈ R(τA0
), ψ ∈ R(τ

A⊺
1
) ⇒

⟨⟨⟨
z

A⊺
1
′φ,ψ⟩⟩⟩1 = ⟨⟨qτA1

z

A⊺
1
′φ, qτ

A⊺
1
ψ⟩⟩1 = −⟨⟨qτA0

φ, qτ
A⊺
0

xA′
0
ψ⟩⟩0 = −⟨⟨⟨φ,

xA′
0
ψ⟩⟩⟩0
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes Åℓ ⊂ Aℓ and R(. . . ) ⊂ N(. . . )
A0 ∶ D(A0)→ D(A1)

A
⊺
1
′
∶ D(A

⊺
0 )
′
→ D(A

⊺
1 )
′

(vol diff ops)

(surf diff ops)

A
⊺
1 ∶ D(A

⊺
1 )→ D(A

⊺
0 )

A
′
0 ∶ D(A1)

′
→ D(A0)

′
△! CRAZY △!

simple idea ⇒ amazing complexity

D(A0) R(A0) D(A1) R(A1)

T (A0) T(A0)
R(τA0 )
∥

T(A⊺0 )
′

D(A⊺0 )
′ T (A1)

T(A1)
∩

D(A⊺0 )

R(τA1 )
∥

T(A⊺1 )
′

D(A⊺1 )
′

D(A0)′
T(A0)′
∥

R(τ
A⊺
0
)

T(A⊺0 )
∩

D(A1)
T (A⊺0 ) D(A1)′

T(A1)′
∥

R(τ
A⊺
1
)

T(A⊺1 ) T (A⊺1 )

R(A⊺0 ) D(A⊺0 ) R(A⊺1 ) D(A⊺1 )

π�

τ0
τ0

ρ0

A0

A0

⊂

π�
τ1

τ1

ρ1

A1

π̃�

ιq pτ0

pρ0
±xA0

ι�

qτ0

z

A⊺
1
′

π′�

qρ⊺
0

A⊺
1
′

ι′�
π̃�

ιq pτ1

pρ1
±xA1

ι�

τ⊺
0 π�

− id=
y

A⊺
0

xA0

qτ1

π′�

qρ⊺
1

ι′�

ι′�

qτ⊺
0π′�

qρ0
pρ⊺
0

pτ⊺
0

ιq

±
y

A⊺
0

ι�

τ1

π�

− id=xA0
y

A⊺
0

π̃�

A′0

ι′�

qτ⊺
1

xA′
0

π′�

qρ1
pρ⊺
1

pτ⊺
1

ιq

±
y

A⊺
1

ι�

π̃�

π�
τ⊺
0τ⊺

0

ρ⊺
0

A⊺
0

⊃

τ⊺
1τ⊺

1

ρ⊺
1

A⊺
1

A⊺
1

π�
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Traces and “Surface Differential” Operators

Traces for Hilbert Complexes Åℓ ⊂ Aℓ and R(. . . ) ⊂ N(. . . )

⋯ T(A0) T(A1)
T(A2)
∩

N(A⊺1 )
⋯ (trace space complex) iso2

⋯
R(τA0)
∥

T(A⊺0 )
′

R(τA1)
∥

T(A⊺1 )
′

R(τA2)
∥

T(A⊺2 )
′

⋯ (trace range complex) iso2

⋯
T(A⊺0 )
∩

N(A1)
T(A⊺1 ) T(A⊺2 ) ⋯ (dual trace space complex) iso2

⋯
R(τA⊺

0
)

∥
T(A0)′

R(τA⊺
1
)

∥
T(A1)′

R(τA⊺
2
)

∥
T(A2)′

⋯ (dual trace range complex) iso2

π�zA−1 π�xA0

pτ0

pρ0

π�xA1

pτ1

pρ1

π�xA2

pτ2

π� A⊺
1
=0

τ⊺
1

pρ2

pτn

z

A⊺
0
′ z

A⊺
1
′

qρ⊺
0

qτ0

z

A⊺
2
′

qρ⊺
1

z

A⊺
3
′

qρ⊺
2

qτn

qρ⊺n

pτ⊺
0

π�
y

A⊺
0

π� A1=0

τ1pρ⊺
0

π�
y

A⊺
1

pτ⊺
1

π�
y

A⊺
2

pτ⊺
2

π�
y

A⊺
3

pρ⊺n

pτ⊺n

zA′
−1

xA′
0

xA′
1

xA′
2

qτ⊺n
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Happy Birthday

Fin . . .

Dear Patrick . . .

Bon Anniversaire!
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Traces for Hilbert Complexes

. . . to be continued . . .

Appendix
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Regular Subspaces and Their Duals / Trace Hilbert Complexes

Regular Subspaces and Duals

“Regular Subspaces” and Duals
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Regular Subspaces and Their Duals / Trace Hilbert Complexes

Regular Subspaces and Duals

A′0 ∶ D(A1)′ → D(A0)′

H+1 ⊂ D(A1) ⊂ H1 (bd dense embs of reg subsps)

D(A1) = H+1 +A0 H
+
0 (bd reg deco ops)

H+0 (A0) = {x ∈ H+0 ∶ A0 x ∈ H+1 } ⊂ H
+
0 ⊂ D(A0) ⊂ H0 (bd dense embs)

H̊
−
0 = H+0 ′ (duals)

H+1 ⊂ D(A1) ∩D(A⊺0 ) ⊂ H1 (bd dense embs of reg subsps)

note: H+0 (A0) ⊂ H+0 ⊂ D(A0) ⊂ H0 and H′0 ⊂ D(A0)′ ⊂ H̊
−
0 ⊂ H+0 (A0)′

⇒ extend A′0 to A′0 ∶ H̊
−
1 → H+0 (A0)′ by

∀ x ∈ H+0 (A0) A′0 ψ(x) ∶= ψ(A0 x)

H′1 ⊂ D(A1)′
!= H̊

−
1 (A

′
0) ∶= {ψ ∈ H̊

−
1 ∶ A

′
0 ψ ∈ H̊

−
0 } ⊂ H̊

−
1 = H+1 ′ ⊂ H

+
1 (A1)′

⊂: H+1 ⊂ D(A1) ⇒ ψ ∈ D(A1)′ ⊂ H̊
−
1 and A′0 ψ ∈ D(A0)′ ⊂ H̊

−
0

⊃: ψ ∈ H̊−1 (A′0) and D(A1) ∋ y = y1 +A0 y0 ∈ H+1 +A0 H
+
0 (reg deco)

⇒ ψy ∶= ψy1 + (A′0 ψ)y0 and ∣ψy ∣ ≤ c ∣ψ∣
H̊
−
1 (A′0)

∣y ∣D(A1) ⇒ ψ ∈ D(A1)′
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Regular Subspaces and Their Duals / Trace Hilbert Complexes

Characterisation of Dual Spaces by Regular Subspaces

Characterisation of Dual Spaces by “Regular Subspaces”
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Regular Subspaces and Their Duals / Trace Hilbert Complexes

Characterisation of Dual Spaces by Regular Subspaces

Theorem (Characterisation of Dual Spaces by Regular Subspaces)

D(A1)′ = H̊
−
1 (A

′
0) = {ψ ∈ H̊

−
1 ∶ A

′
0 ψ ∈ H̊

−
0 }

D(A⊺0 )
′ = H̊−1 (A

⊺
1
′) = {ψ ∈ H̊−1 ∶ A

⊺
1
′ψ ∈ H̊−2 }

with equivalent norms.

Theorem (Characterisation of Dual Spaces by Regular Subspaces)

D(Å1)′ = H−1 (Å
′
0) = {ψ ∈ H

−
1 ∶ Å

′
0 ψ ∈ H

−
0 }

D(A∗0 )
′ = H−1 (A

∗
1
′) = {ψ ∈ H−1 ∶ A

∗
1
′ψ ∈ H−2 }

with equivalent norms.
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Regular Subspaces and Their Duals / Trace Hilbert Complexes

Characterisation of Trace Ranges by Regular Subspaces

Characterisation of Trace Ranges by “Regular Subspaces”
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Regular Subspaces and Their Duals / Trace Hilbert Complexes

Characterisation of Trace Ranges by Regular Subspaces

recall traces: τA0
∶ D(A0)→ D(A⊺0 )

′, τA⊺
1
∶ D(A⊺1 )→ D(A1)′

N(τA⊺
1
) = D(A∗1 )

N(τA0
) = D(Å0)

R(τA⊺
1
) = D(Å1)○ = {ψ ∈ D(A1)′ ∶ ψ∣D(Å1)

= 0}

R(τA0
) = D(A∗0 )○ = {ψ ∈ D(A

⊺
0 )
′ ∶ ψ∣D(A∗

0
) = 0}

density of H̊
+
1 ⊂ D(Å1) and

∗
H+1 ⊂ D(A

∗
0 ) ⇒

R(τA⊺
1
) = H̊+1 ○ as closed subspace of D(A1)′

R(τA0
) =

∗
H+1
○ as closed subspace of D(A⊺0 )

′

⇒ more detailed

Theorem (Characterisation of Trace Ranges by Regular Subspaces)

R(τA⊺
1
) = D(A1)′ ∩D(Å1)○ = H̊

−
1 (A

′
0) ∩ H̊

+
1
○ = {ψ ∈ H̊−1 ∶ A

′
0 ψ ∈ H̊

−
0 ∧ ψ∣H̊+1 = 0}

R(τA0
) = D(A⊺0 )

′ ∩D(A∗0 )
○ = H̊−1 (A

⊺
1
′) ∩

∗
H+1
○ = {ψ ∈ H̊−1 ∶ A

⊺
1
′ψ ∈ H̊−2 ∧ ψ∣∗

H+
1

= 0}

with equivalent norms.
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Regular Subspaces and Their Duals / Trace Hilbert Complexes

Trace Hilbert Complexes

Hilbert Complexes of Traces and Trace Spaces
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Regular Subspaces and Their Duals / Trace Hilbert Complexes

Trace Hilbert Complexes

Hilbert Complexes of Traces and Trace Spaces . . . to be continued . . .

different unbounded versions of “surface differential operators”

⋯ D(A⊺0 )
′ D(A⊺1 )

′ D(A⊺2 )
′ ⋯⋯

A⊺
1
′ A⊺

2
′

⋯

⋯ D(A1)′ D(A2)′ D(A3)′ ⋯⋯
A′1 A′2

⋯

⋯
∗

H+1
○

∗

H+2
○

∗

H+3
○ ⋯⋯

A⊺
1
′ A⊺

2
′

⋯

⋯ H̊
+

1
○ H̊

+

2
○ H̊

+

3
○ ⋯⋯

A′1 A′2
⋯

⋯ H̊
−

1 H̊
−

2 H̊
−

3 ⋯
⋯

A⊺
1
′

⋯

A⊺
2
′

A′1

⋯

A′2
⋯

three interpretations

● D(A
⊺
n+1

′
) = R(τAn

) ⊂ D(A
⊺
n )
′

● D(A
′
n) = R(τ

A⊺
n+1

) ⊂ D(An+1)
′

● R(τA0
) =
∗
H
+
1
○

cl sbsp of both D(A
⊺
0 )
′
⊂ H̊
−
1

● A
⊺
1
′
∶ R(τA0

)→ R(τA1
)

● R(τAn
) ⊂
∗
H
+○
n+1 ⊂ H̊

−
n+1

● R(τA0
) = D(A

⊺
0 )
′
∩ D(A

∗
0 )
○

= H̊
−
1 (A

⊺
1
′
) ∩
∗
H
+
1
○

= {ψ ∈ H̊
−
1 ∶ A

⊺
1
′
ψ ∈ H̊

−
2 ∧ ψ∣∗

H+
1

= 0}

= {ψ ∈
∗
H
+
1
○
∶ A
⊺
1
′
ψ ∈

∗
H
+
2
○
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶
∗
H+
1
○(A⊺

1
′)

compact embeddings for trace Hilbert complexes

boundary value problems on trace Hilbert complexes
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