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Exact (singular) solution (left). Classical approximation with P1 Finite
Elements (middle). Weighted approximation (right).
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Reconstruction of the electrical properties
in the human brain by MRI

Medical context
Formulation of the inverse problem

Numerical resolution by Contrast Source Inversion
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Medical context

Aim

Reconstruct the electrical properties (permittivity ε and conductivity σ)
of the tissues in the human brain from radio-frequency measurements
obtained by magnetic resonance imaging (MRI).

 disease detection
 safety standards

ANR Project ELECTRA : IADI (INSERM, Nancy), CHRU Nancy,
Healtis (Nancy), ICUBE (Strasbourg), LMR (Reims)

numerical methods for precise reconstruction of electric properties &
database with respect to age
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Magnetic resonance imaging (MRI)

Principle :

strong static magnetic field B0, e.g. 3T

excitation of hydrogen protons through radiofrequency (RF) pulse at
Larmor frequency, e.g. 128 MHz at 3T  field B1 ⊥ B0

emission of e.m. signal when protons return to initial state

⇒ picture of biological tissues containing water

Birdcage coil : a typical configuration of RF antenna

Ω  computational domain

D ⊂ Ω  measurement area

line source field from 8 or 16
legs (outside D)
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MR-EPT : Electrical Properties Tomography with Magnetic
Resonance modality

MR sequences for MR-EPT correspond to particular measurements
of the rotating RF field B1 perpendicular to B0 :

B+
1 is the rotating component

B−1 is the counter-rotating component

What is measured in MR-EPT?

B+
1 =

B1,x + iB1,y

2
in D
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Maxwell’s equations

time-harmonic Maxwell’s equations at fixed angular frequency ω
with linear isotropic constitution laws, Ohm’s law and scaling wrt
electric permittivity ε0 and magnetic permeability µ0 in free space

⇒ E(x, t) = Re
(
e−iωt

√
ε0E
)
, H(x, t) = Re

(
e−iωt

√
µ0H

)

−ikεrE− curlH = −√µ0Js
−ikµrH + curlE = 0

with source term Js , wave number k = ω
√
ε0µ0 and relative

electromagnetic parameters

εr =
1
ε0

(
ε+

iσ

ω

)
, µr =

µ

µ0
= 1.
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Electric field formulation - 2D

Elimination of H :

curlµ−1
r curlE− k2εrE = ik

√
µ0Js

Two-dimensional transverse magnetic setting and µr = 1 :

E =

0
0
E

 , Js =

0
0
js

 ⇒ −∆E − k2εrE = ik
√
µ0 js︸ ︷︷ ︸

def
= F

Perfect conductor boundary condition in a bounded domain Ω :{
−∆E − k2εrE = F in Ω,

E = 0 on ∂Ω.
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Perturbation due to the presence of an object

Reference configuration : no object ⇒ εr = 1. Source term F .{
−∆E ref − k2E ref = F in Ω,

E ref = 0 on ∂Ω.
(1)

Configuration with object : assume that supp(1− εr ) ⊂ D where
D ⊂⊂ Ω. Same source term F .{

−∆E tot − k2εrE
tot = F in Ω,

E tot = 0 on ∂Ω.
(2)

Forward problem

Let E ref be the solution to (1) for given F .
For given εr , find the scattered field E sc = E tot − E ref , solution to{

−∆E sc − k2εrE
sc = −k2(1− εr )E ref in Ω,

E sc = 0 on ∂Ω.
(3)

↪→ well-posedness under appropriate assumptions on k2 and εr
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MR-EPT measurements

Maxwell’s equations (µr = 1)  curlE = ikH

in 2D : H = − i

k
curlE = − i

k

(
∂yE
−∂xE

)
def
= C(E ).

MR-EPT measurements

B+
1 =

Hsc
x + iHsc

y

2
def
= B(Hsc) in D

where Hsc = C(E sc) and E sc is the scattered electric field, solution
to the forward problem{

−∆E sc − k2εrE
sc = −k2(1− εr )E ref in Ω,

E sc = 0 on ∂Ω.
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A first formulation for the inverse problem

Inverse problem as a parameter problem

Let E ref be the solution to (1) for given F .

For given measurements f data on D ⊂ Ω, find εr such that the
B+

1 -field derived from the scattered field E sc, solution to the
forward problem with εr , satifies B+

1|D = f data.

Inverse problems are usually ill-posed :
1 lack of existence
2 lack of uniqueness (two different parameters yield the same

measurement)
3 lack of continuity (small error in the data  large error in the

solution)
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Uniqueness : an identifiability result

Theorem

Let f data
1 and f data

2 be two measurements corresponding to the
parameters εr ,1 and εr ,2 respectively, and let Assumptions (1–3) be
true.

Then, f data
1 = f data

2 on D implies εr ,1 = εr ,2 on Ω.

Assumptions

1 supp(F ) ∩ D = ∅
2 E ref 6= 0 a.e. in D

3 supp(1− εr ) ⊂⊂ D
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Sketch of the proof

Let E sc
` = E sc

` (εr ,`) (` = 1, 2), and assume f data
1 = f data

2 in D :

Hsc
x,1 + iHsc

y ,1 = Hsc
x,2 + iHsc

y ,2 in D

where Hsc
` = − i

k
curlE sc

` (` = 1, 2).

Let v = E sc
1 − E sc

2 .

⇒ Re(v), Im(v) satisfy the Cauchy-Riemann equations.

⇒ ∆(E sc
1 − E sc

2 ) = 0 in D.

E sc
` is solution of Helmholtz equation with parameter εr ,` (` = 1, 2) :

−∆E sc
` − k2εr ,`E

sc
` = −k2(1− εr ,`)E ref

∆(E sc
1 − E sc

2 ) = ∆v = 0 in D

⇒ εr ,1E
sc
1 − εr ,2E sc

2 = − (εr ,1 − εr ,2)E ref in D.
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Sketch of the proof - continued

εr ,1E
sc
1 − εr ,2E sc

2 = − (εr ,1 − εr ,2)E ref in D

Assumption on εr ,` ⇒ ∃B ⊂ D : εr ,` = 1 in B.

⇒ v = E sc
1 − E sc

2 = 0 in B and ∆v = 0 in D.

Unique continuation principle : v = 0 in D, i.e. E sc
1 = E sc

2 in D.

(εr ,1 − εr ,2) E tot︸︷︷︸
=E sc+E ref

= 0 in D.

It follows from the assumptions on F and E ref that E tot 6= 0 a.e. in D.
Thus εr ,1 = εr ,2 a.e. in D.

�
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The inverse problem as contrast source inversion

Numerical resolution of the inverse parameter problem by minimization of
a least square functional of the data error  evaluation of the functional
needs the resolution of the forward problem{

−∆E sc − k2εrE
sc = −k2(1− εr )E ref in Ω,

E sc = 0 on ∂Ω.

Difficulty : the operator depends on εr

Reformulation of the forward problem


−∆E sc − k2E sc = −k2(1− εr ) (E sc + E ref)︸ ︷︷ ︸

=E tot

in Ω,

E sc = 0 on ∂Ω.

(4)

Let χ = 1− εr the contrast function and w = χE tot the contrast source.

Linear solution operator
{
Lb : L2(Ω) → H1

0 (Ω)
w 7→ E sc

where E sc ∈ H1
0 (Ω) is the (variational) solution to (4) with w = χE tot.
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The inverse problem as contrast source inversion

Let RD : L2(Ω)→ L2(D) be the restriction operator to D ⊂ Ω.

Recall that χ = 1− εr and w = χE tot.

Operator formulation of the data and state equation :

B+
1|D = f data ⇒ (RD ◦ B ◦ C ◦ Lb) (w) = f data

E ref + E sc = E tot ⇒ χ
(
E ref + Lb(w)

)
= w

Ddata def
= RD ◦ B ◦ C ◦ Lb

Inverse problem as contrast source inversion (CSI)

Let E ref be the solution to (1) for given F .
For given measurements f data on D ⊂ Ω, find (χ,w) defined on Ω,
such that{

Ddata(w) = f data [data equation]

χ
(
E ref + Lb(w)

)
= w [state equation]
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Resolution of the inverse problem by minimization

Cost function

F(χ,w) = Fdata(w) + F state(χ,w) −→ min

with Fdata(w) = ηdata

2 ‖f
data −Ddata(w)‖20,D ,

F state(χ,w) = ηstate

2 ‖χ(E ref + Lb(w))− w‖20,D ,

for any χ ∈ L∞(Ω) and w ∈ L2(Ω) and normalization constants
ηdata > 0 and ηstate > 0.

Two-step iterative method :

update wn by a conjugate gradient (Polak-Ribière) method  wn+1

compute E tot
n+1 = E ref + Lb(wn+1)

update χn from knowledge of E tot
n+1 in order to satisfy the state

equation
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Numerical results

Figure – Configuration of a
birdcage coil

Line source field

js(x) =
√
I

16∑
`=1

e ikr`
√
r`

with intensity I and r` = ‖x− c`‖ the
distance to the center c` of the `th leg.

Figure – E ref (without object, right), E tot (with object, middle), E sc

(scattered field, right), P1 FEM - FreeFem++
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Numerical results : academic configuration

Figure – Reconstruction at iteration 30 (left) and 200 (middle). View 1d
at line y = x (right). Real part of εr . Upper line : noiseless data without
regularization. Lower line : 5% noisy data with Tikhonov regularization.
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Realistic 2D configuration of the humain brain

Figure – Ground truth (left). Reconstruction from noiseless data at
iteration 50 (middle) and 100 (right). Upper line : permittivity. Lower
line : conductivity.
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Realistic 2D configuration of the humain brain

Data mesh : ca. 100 000 nodes (200 000 elements)
CSI mesh : ca. 60 000 nodes (120 000 elements)

Number of measurements in D : ca. 34 000.
Computational time (PC) : ca. 2h.

Figure – Data error ρ at iteration 50 (left) and 100 (right).

L2-error on permittivity : 13% at iteration 100.
L2-error on conductivity : 27% at iteration 100.
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Conclusion and on-going work

Identifiability of EPs ε and σ from realistic
B+

1 -data.

Reconstruction of ε and σ in various
academic and realistic configurations.

|B+
1 |

Future work

(Multiplicative) regularization of CSI [cf. Balidemaj et al 2016]

Phaseless data : |B+
1 | instead of full B+

1 data [cf. Arduino et al.
2018]

Experimental data of a phantom [IADI, Nancy]
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Thank you and Happy Birthday, Patrick !
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