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Motivation/Goals
The eddy current problem

Find the electric field E, the magnetic flux B, the magnetic field H and
the eddy current J such that

curl E = — jwB, inQ c R3,
curlH =Js+ dJdeg, inQ (1)
divB =0,inQ

where Q is bd simply connected with a connected bdy, Js is the

divergence free current density, /2 = —1 and w the pulsation, with the
constitutive laws

B=puHinQand Jeo=0Ein Q. CC Q, (2)

where 1 denotes the magnetic permeability and o the electric
conductivity. The boundary conditions are respectively

B-n=0onT =09, (3)
Je'nzoonr(;:aﬂc, (4)
where n stands for the unit outward normal to Q-or Q.
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Motivation/Goals

An illustration of the geometry
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Motivation/Goals
Goals

@ Recall the standard variational formulation,
@ Give its saddle point formulation,

@ Deduce a perturbed formulation (use the explicit form of the
coercivity operator T),

@ Perform an a posteriori error analysis of the discrete perturbed
formulation.
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Continuous formulation

The harmonic A — ¢ formulation

Based on the introduction of a vector potential A in Q and a scalar
potential ¢ in Q. such that:

B=culAinQand E = —jwA—Vypin Q.

(1), (3), (4) = the harmonic A — ¢ formulation:

curl (5" curl A) + a(ij + V(p) =JsinQ,

divic(jw A+ Vy)) = 0in Qg,
Axn=0onTand o(jwA+ Vy)-n=0o0nT,.

The Coulomb gauge: divA =0 & fQC ¢ = 0 = uniqueness of these
potentials.
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Continuous formulation
Weak formulation

Set
Kn(D) = {F € Ho(curl, D) : divF = O},

Him (D) = {f € H'(D): (1, 1)p = 0},

a((A,¢), (A, ")) = (p " curl A, curl A')
+jw™ 1 (o(jwA+ V), (jwA + Vgo’))Qc )
Find (A, ¢) € Kn(Q) x Hl,y (Q) such that

a((A,¢), (A, ¢)) = (Js, Ao, V(A.¢) € Kn(Q) X Him/(Qe).|  (6)

Theorem 2.1 of [Creusé et al:12] ensures the existence and
uniqueness of the weak solution (A, ¢) of this problem.

3 E.Creusé, S. Nicaise, Z. Tang, Y. Le Menach, N. Nemitz, and
F. Piriou.
Math. Models Methods Appl. Sci., 22(5):1150028, 30, 2012.
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Continuous and discrete perturbed formulations
The saddle point formulation

The Coulomb gauge div A = 0 leads to some numerical difficulties,
hence we transform the previous FV into a saddle point pb.

For v > 0 arbitrary, introduce the bd sesquilinear form on

V := Ho(curl; Q) x H},, () x H3(2) by

A((v,9,9), (V' ¢, ) = a((v, 9), (V. ) +7((V, VGa + (v, VT)a).

The saddle point pb: Find (A, ¢, pa) € V such that

AV((A p,pa), (V¢ q) = (s, V), Y(V.,¢,q)eV.| (7)

(A, ) solves (6) if and only if (A, ¢, 0) solves (7).
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Continuous and discrete perturbed formulations

The saddle point formulation: well-posedness via the

T-coercivity

For (v,%,q) € V, we split v = k + V¢, where (k, ¢) € Kn(Q) x H}(),
and define the operator

T:(k+Ve,v,q)— (k+VQq,¢%,¢),
with jwv + Vi = ju(k + Vq) + Vi* so that

AL ((v,9,9), T(V,9,q)) = (" curl k, curl K)q + 7| Vo3
+IVall3 + jw Vo (jwv + V)13,

This implies that A, ((v,v,q), T(v,v,q)) is coercive on V.
Further T2 =TI so T is an iso from V into itself, hence (7) is well-posed.

3 P. Ciarlet Jr.
T-coercivity: A practical tool for the study of variational formulations
in Hilbert spaces, book in preparation.
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Continuous and discrete perturbed formulations

Equivalent formulation using the mapping T

Set F(V',¢',q') = (Js, V'), then as T is an iso,

Ay ((A,0,pa), (V' ¢, q)) = F(V',¢'.q), Y(V',¢',q) €V =
Ay (A0, pa), T(V!, ¢, q)) = F(T(V,¢',q)), V(V, ¢, q) € V.
But divds=0= F(T(V,¢'.q)) = (Js, V),V (V,¢',q) € V.
This yields the equivalent formulation of (7):

a((A7 (10)7 (Vlv (10/)) + ’7(V§75A, v¢/)Q = (J37 V,)Q’

for all (v/, ') € Ho(curl, Q) x H} ., (Qc),

when v/ = k' + V¢’ and A=k, + Voa.

Note that the solution is independent of ~, but the red term is
problematic for numerical purposes. So we replace it by

v(A,V)q,

which now yields a solution that depends on ~.
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Continuous and discrete perturbed formulations

Perturbed formulation

Given an arbitrary positive real number ~, the perturbed formulation of
(6) consists in looking for (A, ¢-) € Ho(curl, Q) x H},,,(Qc) solution of

a’Y((A'Y7 @V)? (Alv 80,)) = (JS7 Al)Q? \V/(A/7 (10/) € HO(Curlﬂ Q) X H1 (QC)7 (8)

where

a,((A,¢), (A, ¢) = a((A ¢), (A, ¢)) +7(A A)q.
As div Js = 0, by taking A’ = V¢, with ¢ € HJ(Q) and ¢’ = —(jw) 14
in (8), we obtain

divA, =0.
Note that
A, — Al Hyeur,0) + oy — @l S Yldslla-

Since ~ is assumed to be small, without loss of generality we can
assume that v < 1.
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Continuous and discrete perturbed formulations

Discrete perturbed formulation

Assume given a finite dimensional space X, C Hy(curl, 2) and a finite
dimensional space Vj, C H}(Q) such that

VV,C Xp.
We introduce the spaces
Ve = {p € H'(Q) : 3 € Vi such that ¢ = 1, on Qc},
Ven=1{pe€ Ven: / o(x) dx = 0}.

o]

The discrete approx. of (8): Find (A, n,¢,.n) € Xn x Vops. t.

a’Y((A’y,fh SO’V,h)v (A/h? QOIh)) = (JSv A/h)Q’ v(A/hv (plh) € Xh X VC,h' (9)
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A posteriori error estimations
The error estimator

The polyhedron Q is now assumed to be triangulated by a shape
regular family of meshes (7,)x, made of (closed) simplices T that is
conform with respect to Q.. Then we introduce the error estimator

nT:A
nr.2

NFA

NF;2

nT:4

=) 5, UT—Zﬁre+ > ZUFE’VTETh,

TeTy FCoT ¢=1

hrl|lwpds — curl(u~" curl Ay p)—vA, p — o (jwAy h+ Voyp)l T,
hrlds — mndsllT, nr3 = hTHle(U(/WA'y,h + Vo, n)lT,

1
he| [w curl A, x nF} e
T
hE|| [(o(jwAyn+ Voyn) - NE| - lF,
1
VIhTdivA sliT,  nEs = VARl [Ayn - nE] £ IlF,

where ng = one fixed unit normal vector to F and [-]r = jump of the
quantity through F.
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A posteriori error estimations
Reliability

For the reliability, we require the following (weak) assumption
NDo(Tr) NHo(curl, Q) C X, and PPY(T5) C Vp,

where N'Dy(Tp) are the Nédélec FE space of lowest degree on 7, and
forany ¢/ € N,

PPY(Tp) = {u € L3(Q) : u € P(T),VT € T}
Under these assumptions, for any ¢ € L?(Q) and A’ € L?(Q), their
Clément type interpolant Icjp and P A’ are well-defined and

interpolation error estimates hold. These estimates combined with the
Galerkin orthogonality yield

Letea=A,— A, p e, =0y — oy n Then

_ o ,. _1
|1 1/26ur19A||9+\ﬁHeAHQ+H\/;(/weAJrVego)Hﬂc5(1 +w™2)n.
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A posteriori error estimations

Efficiency

For the efficiency, we require the following assumptions that there
exists ¢ € N* such that

Xy € PPY(T)% and Vj, ¢ PPY(Tp),

and
o, 1 € PPY(Tp).

As usual, the local efficiency is based on the use of bubble fcts,
inverse inequalities and integration by parts.

Forall T € T, we have

1 g, . —
7 S vl ealurtw |/ ~(jweatVey)|w,+ln" curl €alluy+ Y, 1772
T'Cwr

(10)

= = = = = T
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A posteriori error estimations
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